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Abstract: Wind field analysis from synthetic aperture radar images allows the estimation of

wind direction and speed based on image descriptors. In thispaper, we propose a frame-

work to automate wind direction retrieval based on wavelet decomposition associated with

spectral processing. We extend existing undecimated wavelet transform approaches, by in-

cluding à trous with B3 spline scaling function, in addition to other wavelet basesas Gabor

and Mexican-hat. The purpose is to extract more reliable directional information, when wind

speed values range from 5 to 10 ms−1. Using C-band empirical models, associated with the

estimated directional information, we calculate local wind speed values and compare our re-

sults with QuikSCAT scatterometer data. The proposed approach has potential application in

the evaluation of oil spills and wind farms.

Keywords: SAR; Wind Direction; FFT; CMOD4; wind speed.

1. Introduction

Oceanic images acquired by Synthetic Aperture Radar (SAR) systems enclose information of geo-

physical parameters of the marine environment. In particular, microwave sensitivity to surface roughness

enables exploitation of SAR imagery for accurate surface wind estimation (direction and speed). SAR
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image analysis is a powerful tool to investigate atmospheric and marine processes at spatial scales, not

attained by other space borne sensors [1]. In addition to SAR systems, radar scatterometers allow ocean

surface measurements and can be especially useful in cases where the wind vector retrievals by SAR

are inaccurate. Satellite-based wind mapping is a helpful tool for quick estimates of the wind condi-

tions. This combination has proven to be more efficient than the wind climatology method, based on at

least one year of accurate wind measurements. There are different approaches and applications of SAR

images, we discuss some of them in this section and emphasizethat the range definition of wind speed

is quite controversial in the literature. Next, we will showhow our method fill in the gaps of current

available approaches.

Portabellaet al. [2] proposed to retrieve wind vectors by means of combining SARdata and numerical

weather prediction models as an optimal inversion method toimprove SAR wind vectors estimation.

They [2] adopted that low winds are under 7ms−1 when deriving wind fields from ERS-2 SAR images.

Cameronet al. [3] combined SAR and scatterometer data to characterize wind farms and their potential

energy output around coastal areas. This investigation included the method in [2] as an alternative

inversion scheme for wind vectors retrieval from SAR backscatter, using a Bayesian approach to combine

trial wind vectors and weather predicted data. The method has proven to be adequate to both moderate

and high winds. The range of strong (high) wind speeds according to [4], is higher than 11ms−1.

Oil spill monitoring often use SAR images from the ocean to extract wind vectors from streaks on

the sea surface. From the wind vectors, it is possible to calculate the wind speed, which influences the

visibility of slicks on the sea surface [5]. They observed that natural films are indistinguishable from oil

spills if the range of wind speeds is out of the interval 3 to 10ms−1. However, Solberget al. [6] noticed

a high probability of false slicks for wind speeds less than 5ms−1; such analysis also reported fewer

dark spots from local low-wind areas when in the range between 5 and 10ms−1. Pavlakiset al. reported

in [7] that under low wind speed conditions, such as 3 to 7ms−1, oil spills could yield detectable radar

backscattering contrast signals. These authors assumed that medium winds are within the interval of 7

ms−1 to 13ms−1 and high winds are above 13ms−1.

Fichaux and Ranchin [8] calculate the orientation of wind streaks from SAR images by using a spec-

tral domain method which consists in applying a windowed Fourier transform to the wavelet coefficients

referring to a given radar image to recover the wind direction. This spectral approach used the fast

Fourier transform algorithm (FFT) to search for the dominant direction of wind streaks. These direc-

tions are based on the position of the two maximal of the Fourier spectrum computed on a second-level

wavelet coefficient image [9].

Instead of retrieving wind parameters using spectral methods, it is possible to use spatial domain

algorithms [10, 11], as the decimated wavelet transform [7], which allows feature extraction from local

histograms of the image gradient direction. Among several spatial domain methods, a widely-used

method is the local gradient (LG) [12], capable of retrieving wind direction using local gradients derived

from smoothed amplitude images. According to [11] the LG algorithm is less efficient and tends to

fail in areas characterized by a low-speed wind field where the estimates tend to be significantly non

homogeneous. The main limitation of spatial algorithms is the dependence on wind rows associated

with atmospheric boundary layer roll vortices in the SAR image, an approach that often requires human

intervention.
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Ceccarelliet al. [11] proposed a texture based approach for wind detection in theocean and showed

results that are more robust to noise than standard and optimized LG algorithms. This method explored

the advantages of both the spectral method and the local gradient, by using a localized filtering-based

approach, combining both the spatial domain and the frequency domain. It consisted in extracting the

preferred orientation of textural patterns in the SAR imagerather than from its respective energy varia-

tion.

Du et al. [7] introduced a method in the wavelet domain for wind direction retrieval, which could

quantitatively describe the image streaks through textureinformation detected from the vertical wavelet

coefficients within a Haar wavelet decomposition. Moreover, they have suggested that different wavelet

basis functions may lead to slightly different results.

These previous algorithms consider wind speed estimation from SAR images, including scatterom-

eter wind retrieval models such as the C-band model (CMOD) series for vertical polarization radars in

transmit and receive (VV) mode, which requires a well-calibrated image. The wind direction is an im-

portant input parameter for these models and it is used in [7, 13–15] for wind speed estimation from

SAR images. Our paper assesses the algorithms by using wind speed results from three CMOD-based

models available in the literature and presents comparisonamong them with the QuikSCAT measures.

We extend the method introduced by Fichaux and Ranchin in [8], by improving the algorithm to detect

wind direction on coastal region with wind speed within the range of 5 to 10ms−1. Our algorithm takes

a SAR image as input, decomposes it by using wavelet functions, transforms the wavelet coefficients

into their spectral version and finally detects peaks in the spectrum domain to recover the orientation of

streaks. The motivation for choosing undecimated waveletsis: Mexican-hat presents suitable selectivity

in position and the Gabor wavelet can be tuned to detect directional features. Our algorithm estimates the

wind direction using the Fourier spectrum, although the wavelet transform provides good localization

in both spatial and spectral domains. Our method takes the wavelet coefficients of the decomposed

SAR image as input to peak detection using spectral energy, while it attenuates the undesirable high

frequencies and maintains the main spectral energy, located perpendicular to the orientation of streaks

[16]. The image decomposition by wavelets enables detection ofwind streaks at a certain spatial scale

and later identification of wind orientation and wind speed estimation.

This paper is organized as follows: Section2. describes the SAR data, Section3. presents the basic

concepts of wavelet transforms to retrieve wind directionsfrom satellite SAR data. It also describes

models for wind speed estimation from SAR images with HH polarization. In Section4., we compare

the results from processing SAR images using different methods to extract wind vectors with satellite

scatterometer data. Discussions about the contribution ofproposed framework are in Section5..

2. SAR Images and QuikSCAT Data

We address SAR images from the RADARSAT-1, ENVISAT and ALOS PALSAR satellites, which

images were acquired over the coast of Rio Grande do Norte (RN),Brazil. The Canadian satellite

RADARSAT-1 acquires SAR images over the oceans on a continuousbasis to support measures of geo-

physical parameters such as ocean surface winds. The SAR system aboard the RADARSAT-1 satellite

[17] is a right looking radar, which acquires images at C-band (5.3 GHz) and at horizontal (HH) polar-

ization in transmit and receive modes. It operates at moderate incidence angle between10◦ and59◦, a
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Figure 1. SAR images over the coast of Rio Grande do Norte, Northeast Brazil. (a)

RADARSAT-1 SAR, acquired on September 29, 2006 with HH polarization. (b) Extract

of the SAR image (4096x4096 pixels) referenced in latitude and longitude (decimal degrees)

representing 51.2x51.2km. (c) ENVISAT ASAR, acquired on February 01, 2005 with HH

polarization. (d) ALOS PALSAR, acquired on July 20, 2007 withHH polarization.

(a) RADARSAT-1. (b) The region of interest (ROI).

(c) ENVISAT ASAR. (d) ALOS PALSAR.

swath width of up to500 km and with a range of 8 to 100m in resolution. RADARSAT-1 images were

acquired in the standard mode, beam mode: SAR Standard 2,100 km swath width. The SAR image

displayed in Figure1awas captured on September29, 2006, at8:07 a.m, with a radar incidence angle of

27.291◦ and with pixel size of12.5 m by 12.5 m, corresponding to a region of the coast of Rio Grande

do Norte (RN), Brazil. Figure1bpresents the region of interest (ROI) extracted from the RADARSAT-1

SAR image displayed in Figure1a.
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The advanced SAR (ASAR) aboard the European satellite ENVISAT operates in the C-band (5.34

GHz) and, in contrast to the RADARSAT-1 satellite, at both vertical (VV) and horizontal (HH) polariza-

tion in transmitting and receiving. For the following studyASAR data were acquired at HH polarization

in transmitting and receiving modes. Figure1c shows the ENVISAT ASAR image which covers the

same area. This SAR image was captured on February 01, 2005 with HH polarization.

In January 24, 2006, the Japan Aerospace Exploration Agencylaunched the Advanced Land Ob-

serving Satellite (ALOS), which carries the Phased-Array L-Band Synthetic Aperture Radar (PALSAR).

PALSAR is an active microwave sensor, which is not affected by weather conditions and operable both

daytime and nighttime [18]. PALSAR is a full polarimetric (multi-polarization) system which acquires

images in HH, HV, VV and VH polarization. The ALOS images (e.g. Figure1d) were acquired in

the PALSAR Fine Single, which cover areas40-70 km with pixel size of12.5 m by 12.5 m and HH

polarization.

Table 1. The set of SAR images using a 12.5m pixel size.

Satellite Mode Beam Orbit Image Time UTC
Wind

Conditions1

RADARSAT-1 Standard 7 39713 2003/06/14 07:56 M/9.1

RADARSAT-1 Standard 2 39756 2003/06/17 08:09 M/6.3

RADARSAT-1 Standard 7 56863 2006/09/26 07:55 H/11.2

RADARSAT-1 Standard 2 56906 2006/09/29 08:07 M/9.8

RADARSAT-1 Standard 3 56906 2001/02/03 20:42 M/6.1

RADARSAT-1 Standard 6 56906 2001/02/07 07:53 L/4.0

ENVISAT IMG 11779 2004/06/01 00:39 M/9.4

ENVISAT IMG 15286 2005/02/01 00:38 M/9.8

ENVISAT IMP 19566 2005/11/29 00:41 H/11.0

ENVISAT IMP 25342 2007/01/04 12:13 M/6.9

ALOS FBS8 7905 2007/07/20 01:16 M/10

ALOS FBS8 12602 2008/06/06 01:13 M/8.2

ALOS FBS8 18641 2009/07/25 01:18 H/10.5

ALOS FBS8 19064 2009/08/23 01:16 M/9.7
1L, low winds (< 5 ms−1); M, moderate wind (5ms−1 < v < 10ms−1);

H, high winds (> 10ms−1). Mean value of speed winds provided by QuikSCAT.

Table 1 summarizes the SAR images information, regarding six RADARSAT-1 images, four EN-

VISAT images and four ALOS PALSAR images, used to validate the new wind-retrieval algorithm

throughout this paper.

A different source of information came from the satellite QuikSCAT, launched on June 19, 1999. It

contains the instrument SeaWinds, which measures near-surface wind speed and wind direction at25 km

resolution. The wind accuracy from QuikSCAT is stated to be2.0 ms−1 in wind speed and20◦ in wind

direction. This accuracy depends on the distance from the shore, wind speed range and atmospheric
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Figure 2. (a) QuikSCAT wind direction and wind speed estimation on September 29, 2006.

(b) QuikSCAT over ROI.

(a) QuikSCAT wind vectors. (www.remss.com) (b) QuikSCAT wind vectors.

conditions [19].

The QuikSCAT daily data is a matrix of dimensions 1440x720x4x2, where the first index represents

longitude (from0o to360o), second index, latitude (from−90o to90o), third index, UTC time, wind speed

(ms−1), wind direction (degrees) and rain flag, respectively, andfourth index, ascending or descending

passes. Figure2ashows QuikSCAT wind vectors over Atlantic, Tropical, South extracted on September

29, 2006. The first cell of the matrix is at longitude0.125o E and in latitude−89.875o, in the0.25o ×
0.25o space resolution. The QuikSCAT wind speed is relative to a height of 10 m above sea level and

to a neutral atmospheric stability [20]. The wind direction data follow the oceanographic convention,

indicating the direction the wind blows, and are used as input variables in C-band models for calculating

the wind speed.

Figure1b and Figure2b show our SAR and QuikSCAT data, used to retrieve the directionand speed

variables over the RN coast in different dates. According to the scatterometer measurements, the wind

speeds in these areas ranged from 4 to 11ms−1 (see Table1). From the available data set (about 14 SAR

images) 5 images were selected with time difference between7 and 12 h, 4 with approximately 4 h, and

3 with less than 1 h. The interpretation of QuikSCAT region of interest requires geographic coordinate

transformation according to Equations2 and3.

longitude = 360− longitude (1)

column =
longitude+ 0.125

0.25
(2)

row =
latitude+ 90.125

0.25
(3)

where the longitude and latitude variables are given in degrees. The acquired matrices of QuikSCAT

(wind direction and speed) are used to evaluate our direction results.
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3. Methods

Wind field retrieval from SAR images requires both wind direction and speed calculation. Such

information can be acquired from one or more sources as: (a) measurements of other instruments (scat-

terometer, buoys, etc.), (b) meteorological models, (c) wind-induced streaks if evident in the SAR images

or from intelligent image processing remote systems. We review standard methods used for comparison

to the proposed approach: we summarize two methods to estimate wind direction (Subsections3.1. and

3.2.), both using wind-induced streaks from SAR images. Subsection 3.3. summarizes C-band models

to estimate wind speed. Finally in Subsection3.4., we present undecimated methods, describing the

foundations of the proposed approach and our contributionsto previous work.

3.1. The WDWaT method for wind direction estimation

Wind direction retrieval is based on the measurement of texture features from SAR images of the

ocean. Each texture feature is a scalar value, computed froma whole image or a sub-scene, which

characterizes the grey-level variation within the immediate area. The wind direction estimation from

wavelet transform (WDWaT) is based on decimated wavelet transforms [21]. Du et al. in [7] introduced

this approach for estimating the relative strength of the streaks in SAR images, by deriving the maximum

of the standard deviations of the mean cross section (MStdM ) as a detection criterion.

The WDWaT algorithm provides a multiscale texture analysis and identifies subscenes of weak direc-

tional features. It can quantitatively describe image streaks through the standard deviation of the mean

cross section (StdM ) of vertical details within a wavelet decomposition [7]. The cross-section mean

of the area of interest is obtained by computing the mean value of each column in a vertical direction.

When the image is rotated through180◦ with a given rotation interval, the mean value of the cross sec-

tion at different angles are obtained (rotation angle180
n

). The choice ofn depends on the accuracy of the

required estimation.

TheMStdM and the average of the standard deviations of the mean cross section (AvStdM ) of these

curves are calculated as follows:

MStdM=max[StdM(1), StdM(2), · · · , StdM(n)]

AvStdM=average[StdM(1), StdM(2),· · ·, StdM(n)]

whereStdM(i) is the standard deviation of the mean cross section for thei-th rotation angle. The factor

K to describe the strength of the directional features [7] is given by:

K =
MStdM

AvStdM
> 1. (4)

The factorK is fundamental to determine the optimal spatial scale for the directional estimation of

texture features. Also,K can be used to make quality-control decisions [7]. The higher the value ofK,

the stronger the directional features in the image.

3.2. The LG-method for wind direction estimation

Koch proposed in [12] the local gradient method (LG) which divides an image into sub-images,

depending on the space grid over which the wind is requested;then image operators are applied to the
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images to produce a map of valid points, on which the local gradient directions are computed. The LG

method consists of three steps to derive wind direction. In the first step, the SAR image is smoothed

and reduced to pixel size of 100, 200, and 400m. From each of these images, local directions, defined

by the normal to the local gradient, are computed leaving a180◦ ambiguity. In the second step, all the

pixels that are effected by non-wind-induced features are masked and excluded from further analysis.

Finally, only the most frequent directions in a predefined grid cell are selected from all of the resulting

directions [22]. The wind direction, assumed to be parallel to the wind streaks, is thus perpendicular

to the direction of the gradient. The direction of the gradient is the direction of highest increase of a

streak [13]. The LG method has in principle the advantage of being more localized, allowing the wind

direction estimation at higher resolution. However, the presence of noise requires large windows for the

local histogram in order to obtain reliable estimate [11]. The algorithm may extract features not caused

by wind and ignore these points while working in the spatial domain by evaluating the local gradients.

3.3. Wind Speed Retrieval Models for Assessment and Comparison Purposes

We estimate wind speed from RADARSAT-1 data using three C-band models: CMOD4 [23], CMOD-

IFR2 [24] and CMOD5 [25, 26]. The QuikSCAT scatterometer is well collocated in time withRADARSAT-

1 orbit, and ERS-2 is close to the ENVISAT orbit [19]. This paper deals with CMOD models, therefore

wind speeds are estimated from RADARSAT-1 images. As the ALOS satellite operates in L-Band, wind

speed estimation is not performed for the ALOS PALSAR images.

The algorithm based on the CMOD4 model was originally developed with three types of Earth ob-

servation data: the scatterometer data (ERS-1), the wind vectors from the European Centre for Medium

Range Weather Forecasts (ECMWF) for surface wind analysis, andthe wind and wave information from

the National Oceanic and Atmospheric Administration (NOAA) wind and wave buoys, respectively [27].

The CMOD-IFR2 is very similar to the CMOD4 model, and most algorithms for C-band SAR wind re-

trieval are based on them [16].

The precise wind direction information is necessary to estimate accurate wind speed when using

CMOD models and Equation (5). Under certain circumstances, it is possible to extract wind direction

directly from SAR images. In this paper we provide a set of experiments to assess the effect of wind

direction in the wind speed estimation by using CMOD models.

For wind speed retrieval, an empirical model function relates the normalized radar cross section

(NRCS) of the ocean surfaceσo to the local near-surface wind speedv, wind direction versus antenna

look directionΦ, and incidence angleθ. The general form of the function is given by

σo = B0(1 +B1cos(Φ) + B2cos(2Φ))p (5)

whereB0, B1 andB2 are coefficients that depend on the incidence angle, wind speed, radar frequency

and polarization andp ∈ R. For the C-band, these coefficients were determined empirically by evaluating

ERS-1 data, which operates at the C-band with VV polarization,and wind fields from the ECMWF [13].

These functions are applicable for wind-speed retrieval from VV-polarized SAR images. The CMOD4

and CMOD-IFR2 have been applied successfully to ERS-1 and ERS-2 images [16].

Particularly RADARSAT-1, the SAR system operates at C-band butwith HH polarization, then the

CMOD models cannot be directly used as they are acquired. Thishappens due toσo decrease as the
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incidence angle increases and the increasing wind speed sensitivity to the error from the wind direction.

Thompson, Elfouhaily, and Chapron [28] derived an empirical expression for the polarization ratio

to obtain an approximate form for the HH polarization backscatter from RADARSAT-1. This hybrid

expression is given by:

PR =
σHH

o

σV V
o

(6)

whereσHH
o andσV V

o are the HH and VV-polarized NRCS, respectively. DifferentPR functions have

been suggested in the literature [13, 24, 28]. We obtained the wind directions from SAR images with

the spectral algorithm and the values are used as inputs to the CMOD models. Next, we compare these

results with those computed from QuikSCAT.

3.4. Undecimated Wavelets

Undecimated wavelet transforms (UWT) or stationary wavelettransform is a shift invariant trans-

formation, relevant to detect wind direction in SAR images.We use the UWT to decompose a SAR

image into wavelet coefficients to emphasize details in different scales of the image. The wavelet coef-

ficients are the input to the spectral method, an algorithm tocalculate the Fourier transform, followed

by the identification of the maximum values in the Fourier spectrum. The next sections present different

versions of the UWT algorithm, using different basis functions.

In UWT decomposition the number of the wavelet coefficients does not shrink between the transform

levels. This additional information can be very useful for the better analysis and understanding of the

signal properties. The translation-invariant property ofthe undecimated wavelet transforms is important

in feature-extraction applications [29], therefore we use it for streak detection in this paper.

(A) The à Trous Wavelet Transform

Theà trous (with holes) algorithm decomposes a signal without subsampling, i.e. no decimation step

is undertaken and in each projection only the filters are dilated [29–33]. This transform was successfully

used by Fichaux and Ranchin [8] over a triangular function. Our paper includes the Mexican-hat and

Gabor undecimated wavelet transforms and theB3-spline basis.

Theà trous algorithm allows the separation of low-frequency information (approximation) from high-

frequency information (wavelet coefficients or detail coefficients). This UWT can be interpreted as a

frequency decomposition with each set presenting a different spatial orientation. According to Bijaoui

et al. [33], two scaling functions lead to piecewise linear interpolation: the triangular function and the

B3-spline.

The main reason to choose theà trous algorithm for this application is the information redundancy

between decomposition scales observed in the gradual blurring effect inherent to it.

This algorithm consists in convolving the original signal,s(k), with a filter h which is interpolated

by 2j−1 zeros at each decomposition scalej. The most common filtersh in the à trous algorithm are

the triangular function and theB3-spline function [33]. The reconstruction of the original signals(k) is
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obtained by adding the last smoothed signalsN(k) with the set of wavelet coefficients [34],

s(k) = sN(k) +
N∑

j=1

wj(k) (7)

whereN is the number of all wavelet scales.

(B) The Gabor Wavelet Transform

The Gabor wavelet is a complex-valued wavelet which obtainsthe optimal localization in spatial and

frequency domains, simultaneously. Furthermore, the Gabor wavelet is directional and capable of tuning

to specific frequencies, thus allowing it to be adjusted for streak enhancement and orientation detection.

A 2-D Gabor function,g(x, y) is defined as [35]:

g(x, y)=

(
1

2πσxσy

)
e
−
[

π

(

(x−x0)2

σ2
x

+
(y−y0)2

σ2
y

)]

e[i(ξ0x+ν0y)] (8)

where(x0, y0) is the center of the spatial domain and(ξ0, ν0) is the optimal spatial frequency of the filter

in the frequency domain. Here,σx andσy are the standard deviations of the modulated Gaussian along

x andy axes.

(C) The Mexican-hat Wavelet Transform

The 2-D Mexican-hat wavelet function is widely used for zero-crossing multiresolution edge detection

[36]. It is defined as [37]:

ψ(a−→x ) = (2− |a−→x |2) exp

(
−a

−→x 2

2

)
(9)

where−→x gives the two-dimensional coordinate of a pixel anda is a scale parameter which also works as

the sample period of the Mexican-hat function. In spatial-frequency domain, it is written as:

ψ̂H(
−→
k ) = (

−→
k .
−→
k )e

(

− 1

2
−→
k ·−→k

)

(10)

where
−→
k represents the 2-D spatial-frequency variable and· is the inner product.

The 2-D Mexican-hat transform is an efficient band-pass filter, often used to separate different scales

in the image to show their relative phase/location information. These characteristics make the 2-D

Mexican-hat wavelet transform a strong candidate method inthe detection of wind streaks from SAR

images.

3.5. Proposed Spectral Algorithm for Wind Direction Estimation

Our method encompasses the undecimated wavelet transformswith à trous (B3-spline), Gabor and

Mexican-hat, as illustrated in Figure3. We extend the algorithm in [8] by using other wavelet transforms,

which have the potential to improve the streak detection results.

The spectral method extracts the wind directions from SAR images, by applying a windowed FFT

to the wavelet coefficient image to model the wind waves. The spectral algorithm considers successive

sub-images of the second level coefficient image. The first level of wavelet coefficients cannot be used
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Figure 3. Algorithms under investigation for wind direction detection: proposed algorithms

(top and center) and the Fichaux and Ranchin’s algorithm [8] (bottom).

for our analysis because it characterizes the features witha spatial scale of 100-200m [8] and due to

noise. For a precision image with 100m pixel size (200m resolution), the image of wavelet coefficients

characterizes features with a spatial scale of 200-400m. In many cases the wind-induced waves are

clearly visible in SAR images as almost linear patterns, called wind streaks, representing scales between

200 and 1600m, where wind-induced phenomena aligned with the wind direction are most likely to

occur [38]. The position of the maximum Fourier spectrum calculated from the wavelet coefficients

(second level) indicates the wind directions.

We apply a local FFT to a SAR image to extract the wind direction with a grid size of250 × 250

pixels, equals to a25 × 25 km grid cell. This grid cell corresponds to the QuikSCAT resolution. For

assessment purpose, we compare the wind direction information estimated by the FFT algorithm with

two algorithms available in the literature and described inthe next section and also with QuikSCAT data.

Figure 4. (a) Original SAR imageI. (b) Image of the dominant directions of the induced

streaks in the ocean detected by the Gabor wavelet.

(a) Original Image. (b) C image.

We estimate direction with Gabor wavelets by rotating the Gabor function (Equation (8) at steps

of 10◦. There are a total ofM different frequencies andN different orientations, resulting inM × N

coefficients for each image pixel(x, y). Equations (11) and (12) refer to the rotation property, as follows:
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gmn(x, y) = g(x′, y′) (11)

wherem ∈ [1,M ], n ∈ [1, N ] andg(x, y) refers to Equation8. The rotation matrix is given by[
x′

y′

]
=

[
cos θn sin θn

− sin θn cos θn

][
x

y

]
, θn =

nπ

N
. (12)

By convolving an imageI(x, y) with Gabor wavelets, the Gabor transformed image can be defined

as:

Î(x, y,m, n) =

∫
I(x′, y′)gmn(x− x′, y − y′)dx′dy′. (13)

In this paper we are interested in the response with the maximum magnitude over all possible orienta-

tions, namely:

T = max
θ

| Î(x, y,m, n) | (14)

After calculating theT image with the maximum magnitude response in all directions, we obtain the

coefficient imageC by subtractingT from I, as illustrated in Figure4b. Finally, the wind direction

estimation is calculated by applying the FFT to imageC, previous derived from a set of imagettes of 25

x 25 km.

Our approach of the Mexican-hat wavelets for wind directionretrieval consists in convolving the

function in Equation (9) with the SAR image, followed by the difference between the SAR image and

the convolution results. Then, the spectral algorithm computes the wind direction from the imagettes of

the coefficient images.

4. Results

This section presents the outcomes of 7 different techniques for wind direction calculation. We com-

pare 3 standard methods and our 3 proposed approaches, by using QuikSCAT direction values as the

gold standard. Next, we calculate wind speeds, using only the wind directions obtained from FFT-based

methods, again checking the agreement with the results fromQuikscat speed values.

We test the algorithms with a set of fourteen SAR images, which refer to the same area, laying

out between4◦30pS and5◦40pS in latitude and35◦50pW and37◦00pW in longitude, in different dates

and weather conditions. Each image is split into imagettes before the calculation of respective wind

direction vectors. In Figure5(a), one imagette corresponds to approximately one quadrant of the image,

from which a direction vector is calculated for each method.Imagettes are 250 x 250 pixel submimages

from the SAR images and we use a total of 41 imagettes.

For an easier reading of Figure5, we label the methods numerically such as: (1) UWT with triangular

base, (2) UWT withB3-spline, (3) UWT with Gabor, (4) UWT with Mexican-hat, (5) WDWaT, (6) LG

and (7) QuikSCAT. This figure illustrates the wind direction using each of the 7 methods for 3 SAR

images, containing a different number of valid imagettes each. The color of direction vectors can be

blue (B), green (G), yellow (Y), magenta (M) and white (W), and they are related to the method, by

using the numerical identifiers pointed out above. As an example, the code G:1, indicates green arrows,

which represent the wind direction calculated using method(1). Notice that each row of Figure5 shows

the same SAR image, but with arrows representing the wind direction result of different methods over 1
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Figure 5. Wind direction vectors from 3 different SAR images: (a-c) RADARSAT-1 SAR

image, on September 29, 2006, (d-f) ALOS PALSAR image, on July 20, 2007 and (g-i)

ENVISAT ASAR image, acquired on February 01, 2005. White arrows indicate the ground-

truth value, from QuikSCAT in all images; color-method associations appear on the label of

each image.

(a) G:1,B:2,W:7 (b) B:2,Y:3,M:4,W:7 (c) B:2,Y:5,M:6,W:7

(d) G:1,B:2,W:7 (e)B:2,Y:3,M:4,W:7 (f) B:2,Y:5,M:6,W:7

(g) G:1,B:2,W:7 (h) B:2,Y:3,M:4,W:7 (i) B:2,Y:5,M:6,W:7

imagette. Table2 presents the mean and standard deviation of wind direction for the different methods

and bold numbers for those that are closer to the QuikSCAT values.



Version June 1, 2010 submitted toSensors 14 of22

In order to evaluate the results of the spectral algorithm over the detail images obtained from the

wavelet decompositions, we adopt the following empirical parameters: the Gabor wavelet uses:σx =

σy = 6.95, ξ0 = 3.14 andν0 = 0, tuned according to the dimension of the streaks (200 to 1600m) in our

dataset. The Mexican-hat wavelet uses parametera set to0.3π, which resulted in noisy suppression and

streak recovery.

Before comparing the wind fields between the scatterometer and the SAR-derived results, we filter

the input data following the criteria: (a) removal of rain-contaminated areas due to scatterometer data

to be less accurate in such circumstances and (b) total overlay of the scatterometer resolution cell (25

km) within the given SAR scene [19]. Although SAR images are independent of weather, rainy areas

in scatterometer data can result in erroneous cross track vectors and/or incorrect high speed values [20].

Furthermore, we separate the imagettes in two groups, according to the speed values from QuikSCAT:

(a) data set consisting of all 41 imagettes (b) data set consisting of only imagettes with wind speeds<

Table 2. Wind direction results to be compared with QuikSCAT measures.

FFT WDWaT LG

SAR images Measures à trous Gabor Hat Haar Gradient QuikSCAT
Triangular B3-spline

Mean (◦) 352.6 306.2 270 287.66 355.0 294 314.2
2003/06/14 Std. dev. (◦) 0.3 2.1 0 20.4 5.8 4.8 2.6

Mean (◦) 334.3 328.5 270.0 180.84 335.0 264.3 277.5
2006/09/26 Std. dev. (◦) 22.2 1.9 0 169.1 5.8 10.4 10.4

Mean (◦) 322.6 316.3 279.0 311.61 295.0 279.4 316.5
2006/09/29 Std. dev. (◦) 11.1 0.07 10.6 2.3 5.7 4.7 0.0

Mean (◦) 275.76 246.33 272.33 225.12 303.33 270.46 259.5
2001/02/03 Std. dev. (◦) 58.26 15.84 76.96 7.42 56.86 0.09 2.59

Mean (◦) 328.57 327.99 327.53 321.67 190 270.35 292.5
2001/02/07 Std. dev. (◦) 0 0 0 0 0 0 0

Mean (◦) 270 275.53 360 270 360 241.89 283.5
2005/11/29 Std. dev. (◦) 0 0 0 0 0 0 0

Mean (◦) 252.66 290.39 317.03 217.28 280 254.84 235.5
2007/01/04 Std. dev. (◦) 152.9 6.13 46.03 13.94 58.06 11.33 5.01

Mean (◦) 284.51 284.83 237.83 325.74 287.5 309.49 282
2005/02/01 Std. dev. (◦) 1.18 1.22 64.8 1.77 39.55 40.95 7.94

Mean (◦) 316.58 286.04 270 326.54 240 241.81 268.5
2007/07/20 Std. dev. (◦) 47.25 9.30 0 1.30 42.43 21.73 6.36

Mean (◦) 294.44 335.56 270 264.92 230 209.79 328.5
2008/06/06 Std. dev. (◦) 16.57 16.57 0 73.59 0 8.59 0

Mean (◦) 342.17 340.34 315 321.89 320 224.99 330
2009/07/25 Std. dev. (◦) 4.37 4.19 63.64 1.4 28.28 15.34 0

Mean (◦) 344.64 285.99 270 243.2 340 263.75 282.75
2009/08/23 Std. dev. (◦) 0.4 1.31 0 37.89 28.28 6.05 1.06
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Figure 6. [ R24 ]Comparison between QuikSCAT (abscissa) and SAR-based methods (or-

dinate) for two data sets: (a, c, e, g) after removing the low-confidence (rain cells) from

QuikSCAT data and (b, d, f, h) regions with wind speeds less than 10ms−1; the FFT meth-

ods differ from their wavelet decompositions:à trous, triangular base (a, b),à trousB3-spline

(c, d), Mexican-hat (e, f) and Gabor (g, h).

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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10ms−1 (32 imagettes).

After calculating the wind direction over each imagette, weillustrate the direction from each imagette

against its correspondent QuikSCAT value in Figure6. In this figure, imagettes wind vectors appear

in blue crosses and QuikSCAT-rain flagged regions in black boxes as neglected data. The main range

of wind direction variation is highlighted by dashed lines.Our results (see Table2) are consistent with

wind directions in the northern coastline of Rio Grande do Norte, Northeastern Brazil (around 36◦W and

5◦S), where the wind blows from East during August to April, andfrom Northeast during May to July

[39]. Indeed, the predominant wind direction in this area is from East and according to the geographic

convention it is expected to be between 202.5◦ and 292.5◦. In addition, Oliveiraet al. [39] also reported

that from March to June, the mean wind speed is expected to be 4.8ms−1 while between August and

December, the winds are expected to be stronger (around 9.0ms−1).

We use statistical descriptors as the bias, root mean squareerror (RMSE), correlation, standard devia-

tion, mean and maximum values in Table3, to interpret the goodness-of-fit among the spectral methods,

showed in Figure6. Bold numbers indicate high correlation and low RMSE occurrence, simultaneously,

an indicator of agreement between the spectral method and the QuikSCAT output. Based on such analy-

sis, we notice that the spectral methods presented best performance, particularly for imagettes with wind

speeds up to 10ms−1.

Certainly, the 2-D Mexican-hat wavelet characteristics as continuity and axis symmetry have played

an important role in extracting structures as streaks. Thismethod detects the highest and lowest backscat-

ter structures in the SAR images, providing the best resultsin our experiments. Also, we observe that the

à trous wavelet transform decomposition withB3-spline base function achieves comparable results to

the 2-D Mexican-hat results. Table3 shows that it outperforms the other methods regarding the RMSE

and correlation measures, particularly for data set with wind speeds up to 10ms−1. Wind directions

estimated by this method are highly correlated (0.61) with QuikSCAT data and thus present the lowest

RMSE (31.15◦) and standard deviation (23.31◦).

Table 3. [ R24 ]Statistical parameters of the comparison of the scatter plot shown in Figure

6.

Total data set (41 imagettes) Only imagettes with wind speed values< 10ms−1

Measures Triangular B3-spline Gabor Hat Triangular B3-spline Gabor Hat

bias (◦) 19.75 17.01 -0.13 -12.24 19.90 16.39 -1.82 -10.25

RMSE (◦) 72.13 31.15 60.68 63.66 82.60 31.24 69.00 38.82

correlation 0.35 0.57 -0.11 0.47 0.35 0.61 -0.22 0.62

std. dev. (◦) 73.92 24.57 49.24 70.61 85.50 23.31 53.22 47.44

mean (◦) 301.39 298.65 281.50 269.39 298.23 294.71 276.51 268.07

maximum (◦) 353.54 347.28 360 328.28 353.39 347.28 360 327.46

QuikSCAT parameters

mean (◦) 281.63 278.33

std. dev. (◦) 30.54 33.50

maximum (◦) 330 328.5
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Figure 7. [ R24 ]Comparison of wind speed retrieval results and QuikSCAT scatterometer

winds. (a, c, e) Wind direction estimated by the FFT method usingB3-spline function. (b, d,

f) Wind direction estimated by the FFT method using Mexican-hat function.

(a) (b)

(c) (d)

(e) (f)

The Gabor wavelet transform combined with the spectral method performs poorly in comparison

with other methods if we look at the bias, RMSE and correlation, as shown by Table3. Notice that the

estimated directions are low correlated (-0.11 and -0.22) with QuikSCAT and the RMSE values (60.68◦

and 69◦) indicate that the Gabor function misses most of the streak patterns from SAR images.

In accordance to the results reported by Fichaux and Ranchin [8], the à trous wavelet transform

decomposition with a triangular base function, performs well in areas of high wind speeds (above 9-10

ms−1) and it is less efficient when performed in areas of low to moderate wind speeds (4-9ms−1).

From now on, our investigation focus on the two best spectralmethods:à trous withB3-spline and

Mexican-hat. We use wind direction results of these two methods as the inputs to CMOD models for

wind speed estimation. Thus, for each imagette we compare the CMOD results with the corresponding

QuikSCAT speed data.



Version June 1, 2010 submitted toSensors 18 of22

Figure7 and Table4 provide data to compare RADARSAT-1 and QuikSCAT wind speeds. Under

low wind speeds, secondary factors can affect the backscatter from the ocean such as meteorological

phenomena and oceanic phenomena, causing backscattering variations for the same wind intensity [19].

The largest differences between the 3 C-band models occur at wind speeds above 10ms−1. At moderate

wind speeds they agree fairly well. The CMOD-IFR2 and CMOD5 models are very similar to each other.

The main difference occurs at very high wind speeds> 20ms−1, where CMOD5 estimates higher winds

[13].

We perform the experiments by using the best wind direction results as inputs to C-band models to

reduce estimate errors. In areas of low to moderate wind speeds the approximation of estimated speeds

and QuikSCAT data was better for CMOD4 with the lowest RMSE values (1.34ms−1 and 0.99ms−1).

Table4 displays the estimated speeds with CMOD4 for the RADARSAT-1 SARstandard images. They

are highly correlated (0.79 and 0.9) with QuikSCAT data.

The comparison with respect to the different CMOD models is performed using the wind directions

resulting from the FFT algorithm with̀a trous wavelet (B3-spline) and FFT algorithm with Mexican-hat

wavelet. In this paper, we apply thePR model called Elfouhaily scattering to estimate the NRCS for

SAR images with the HH polarization, as suggested in [27]. Such a model allows estimation of wind

speed in fairly agreement with wind speed values at several meteorological observation stations. Table4

displays that CMOD4 outperformed the other C-band based models concerning RMSE and correlation

values. It implies that the estimated speed values are closeto the QuikSCAT values. At low to moderate

wind speed values, CMOD4 is the best choice to retrieve SAR wind speed in high resolution SAR

images acquired at C-band [26]. However, especially at high wind speed, CMOD4 underestimates the

wind speeds significantly. Also CMOD-IFR2 and CMOD5 output better estimations at high wind speed

values, but still underestimate the wind speed [13].

Table 4. [ R24 ]Statistical parameters of the comparison of the scatter plot shown in Fig.7.

B3-spline Mexican-hat
Measures CMOD-IFR2 CMOD4 CMOD5 CMOD-IFR2 CMOD4 CMOD5

bias (ms−1) 0.79 0.12 0.64 0.63 0.06 0.68

RMSE (ms−1) 1.75 1.34 1.71 1.34 0.99 1.26

correlation 0.72 0.79 0.69 0.85 0.90 0.87

std. dev. (ms−1) 2.06 2.05 1.91 2.17 2.29 2.09

mean (ms−1) 9.71 9.05 9.57 9.56 8.98 9.60

maximum (ms−1) 11.33 10.87 10.97 11.61 11.07 11.48

QuikSCAT parameters

mean (ms−1) 8.92

std. dev. (ms−1) 2.11

maximum (ms−1) 11.2
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5. Conclusions

We proposed a framework to retrieve wind direction from RADARSAT-1 and ENVISAT ASAR im-

ages acquired with HH polarization in transmitting and receiving at C-band and from ALOS PALSAR

images collected at L-band and with HH polarization. Wind speeds were retrieved from RADARSAT-1

images using an empirical model that gives the dependency ofthe NRCS on wind speed, wind direction

and incidence angle. The model was developed for the ERS-1 SCAToperating at C-band with VV polar-

ization, and was extended to HH polarization by consideringan incidence-angle-dependent polarization

ratio.

Our algorithm decomposed images by applying undecimated wavelets and Fourier transforms to es-

timate direction of the prevailing winds in SAR images. The novel steps encompassed the Gabor and

Mexican-hat undecimated wavelet transforms to derive detail images. The performance of the algorithms

was compared with the LG and WDWaT methods. Furthermore, we also implemented a standard and

widely-used spectral method in the literature, with a different scaling function, theB3-spline, obtaining

better results, given the wind speed range under inspection.

The Mexican-hat wavelet and theà trous algorithm withB3-spline results were similar when com-

paring with the others. The difference between the Mexican-hat wavelet and thèa trous algorithm with

B3-spline relies on the fact that the former enhances the streak patterns, as well as the latter, but it also

enhances undesirable noise and small-scale fluctuations when deriving wind fields from SAR images.

It is a particular characteristic of the Mexican-hat wavelet. Both methods performed similarly when

discharging imagettes containing wind speed values> 10ms−1. In this case, the algorithms achieved

the lowest RMSE and the highest correlation values. Our investigations suggested that it was accom-

plished by the multiscale blurring effect, provided by theB3-spline and Mexican-hat wavelet bases,

which reduced undesirable noise, and small-scale surface roughness, in the range of low to moderate

wind speeds. In addition, this blurring effect preserved relevant information (e.g. streaks) for direc-

tion estimation for several scales. Our results suggested that the wavelet coefficients, obtained with the

B3-spline base function, were more suitable to characterize wind-induced streaks oriented in the wind

direction in scales higher than 200m. It means that thèa trous decomposition with triangular function

in low to moderate wind speed areas is more sensitive to small-scale roughness thanB3-spline base

function, as we expected.

We noticed that speckle noise caused small-scale fluctuations of the backscatter to the SAR images.

This motivated our tuning of theB3-spline and Mexican-hat functions to extract wind-inducedstreaks

and discharge surface small-scale intensity variations. We noticed that the proposed method reduces

speckle noise when applied to multi-look SAR images. The combination of smoothing effect and multi-

look processing, with streak pattern enhancement for wind fields estimation, improved the algorithm

accuracy. Due to the ability of these masks to smooth variations of intensity at small-scales, the perfor-

mance of the algorithm was superior in areas of low to moderate wind speeds in comparison with areas

of high wind speeds. On the other hand, we observed that the energy of the Gabor wavelet function

could have been tuned differently, probably giving more accurate wind direction estimates if considering

a more extensive exploration of the parameters for better alignment to the streak patterns.

Further developments will include a larger data set to evaluate the performance of the proposed
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method for wind field estimation for different areas of the world. Preliminary tests show that SAR

images of hurricanes in the Pacific Ocean could be detected using the proposed algorithm. We might

extend the algorithms to application to images from storms,hurricanes, typhoons and oil spill detection.

Acknowledgements
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Trans. Signal Processing1992, 40, 2464–2482.

32. Dutilleux, P. An implementation of the “algorithmèa trous” to compute the wavelet transform. In
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